skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Russell, Ryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 6, 2025
  2. Abstract Sensitivity analysis with atmospheric chemical transport models may be used to quantify influences of specific emissions on pollutant concentrations. This information facilitates efficient environmental decision‐making regarding emissions control strategies for pollutants that affect human health and public welfare. The multicomplex step method (MCX) is a sensitivity analysis approach that enables calculation of first‐ and higher‐order sensitivities of a nonlinear algorithm with analytical accuracy. Compared to the well‐known finite difference method, the MCX method is also straight‐forward to compute yet does not suffer from precision errors due to subtracting numbers with common leading digits and eliminates the requirement of tuning the step size. The aerosol inorganic equilibrium thermodynamic model, ISORROPIA, which treats ammonium, chloride, nitrate, sodium, sulfate, calcium, potassium, and magnesium, was augmented to leverage the multicomplex step method (ISORROPIA‐MCX) to analyze the influence that the total amount of a pollutant has on concentrations partitioned into different phases. This enables simultaneous calculation of the first‐order, second‐order, and cross‐sensitivity terms in the Taylor Series expansion when evaluating the impact of changes in input parameters on an output variable, increasing the accuracy of the estimated effect when the functions are nonlinear. ISORROPIA encodes highly nonlinear processes which showcases the computational advantages of the multicomplex step method as well as the limitations of the approach for fractured solution surfaces. With ISORROPIA‐MCX, the influence of total concentrations of aerosol precursors on aerosol acidity are evaluated with cross‐sensitivity terms for the first time. 
    more » « less